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Abstract—The deployment of dense, low-cost sensors is critical
for realizing ubiquitous smart environments. However, exist-
ing sensing solutions struggle with the energy, scalability, and
reliability trade-offs imposed by battery maintenance, wireless
transmission overhead, and data processing complexity. In this
work, we present Vibe2Spike, a novel battery-free, wireless sens-
ing framework that enables vibration-based activity recognition
using visible light communication (VLC) and spiking neural
networks (SNNs). Our system uses ultra-low-cost tags composed
only of a piezoelectric disc, a Zener diode, and an LED, which
harvest vibration energy and emit sparse visible light spikes
without requiring batteries or RF radios. These optical spikes are
captured by event cameras and classified using optimized SNN
models evolved via the EONS framework. We evaluate Vibe2Spike
across five device classes, achieving 94.9% average classification
fitness while analyzing the latency-accuracy trade-offs of different
temporal binning strategies. Vibe2Spike demonstrates a scalable,
and energy-efficient approach for enabling intelligent environ-
ments in a batteryless manner.

Index Terms—Spiking Neural Network, Neuromorphic, EONS,
classification

I. INTRODUCTION

The promise of ubiquitous smart environments—industrial
workshops predicting machinery faults, kitchens monitor-
ing appliance usage, or buildings diagnosing structural
wear—remains hindered by the energy-cost-reliability trade-
offs of conventional sensing systems. While vibrations offer
rich insights into machine health, human activity, etc., deploy-
ing sensors at scale requires solutions that are batteryless (to
eliminate maintenance), wireless (to simplify installation), and
ultra-low-cost (to enable dense deployments). Existing systems
fall short in both sensing and computation. Battery-powered
IoT sensors waste energy on continuous RF transmissions and
require regular maintenance, while batteryless RF backscatter
tags suffer from limited range (1-5m) and reduced reliability
in RF-congested environments. On the computational side,
conventional CNN-based edge inference is energy-intensive
and poorly matched to sparse, event-driven data streams.
Although spiking neural networks (SNNs) offer promise for
low-power, temporal processing, they remain largely confined
to simulation and have yet to be widely deployed with real-
world sensing hardware.

Overcoming these limitations requires rethinking the sens-
ing, communication, and computation layers together. First,
sensing must be battery-free and direct. We propose a
vibration-to-spike encoding approach, where ambient me-
chanical vibrations are harvested and directly converted into
sparse optical pulses—eliminating the need for bulky batteries,
microcontrollers, or complex electronics. Second, wireless
communication must be long-range, scalable, and resilient to
interference. Traditional RF systems suffer from congestion
[1], [2], limited range under low-power operation, and spec-
trum saturation from widely deployed wireless technologies
such as Wi-Fi, Bluetooth Low Energy (BLE), etc. In con-
trast, visible Light Communication (VLC) offers a compelling
alternative, as it is completely immune to interference from
the RF spectrum, making it especially well-suited for dense
sensing environments. Importantly for this work, VLC pairs
naturally with neuromorphic (event-based) cameras, which are
optimized to detect sparse optical events with high temporal
precision and wide dynamic range. This makes them ideally
suited to capture the brief, low-power light pulses emitted
by our batteryless vibration tags, even at long distances [3].
Finally, the computation layer must align with the sparse,
event-driven nature of the signal. Frame-based or dense neural
networks are inefficient in this regime. In contrast, Spiking
Neural Networks (SNNs) operate naturally on asynchronous
inputs and support real-time, ultra-low-power inference. In
our system, SNNs are deployed at the receiver—co-located
with the neuromorphic camera—to classify incoming optical
spike streams and infer machine or activity states. Despite
advances in each of these domains individually, no prior work
integrates batteryless sensing, VLC-based communication, and
SNN-driven neuromorphic computation into a unified system
that addresses the combined challenges of power, scalability,
and security in vibration sensing.

To bridge this gap, we propose Vibe2Spike: a novel battery-
free wireless sensing framework for vibration activity detec-
tion using spiking neural networks. Our solution leverages
low-cost sensor tags (less than $1) composed of a piezoelec-
tric disc (piezo), a diode, and an LED. These tags harvest
vibrational energy and emit visible light pulses (”spikes”)
without needing external power sources or traditional wireless
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Fig. 1. Vibe2Spike sensor deployed in workshop on multiple devices. B) Vibe2Spike sensor attached to a drill emitting LED flashes based on the vibrations
of the device. C) LED on/off signal encoded as spikes sent to the SNN network are decoded and classified by device type. D) The temporal LED events are

created by the on/off flashing of the LED producing unique per device signals.

radios. Low-power event cameras capture these optical spikes,
enabling sparse, efficient sensing and communication.

Building on this, we employ the evolutionary optimization
for neuromorphic systems framework (EONS) [4] to design
SNNs that classify vibration-induced optical signals, allowing
machine or activity recognition. Unlike prior VLC systems
focused on high-bandwidth data, we optimize for ultra-low-
power, event-driven transmission that matches the sparse out-
put of both the sensor and the neuromorphic processor.

By tightly integrating batteryless vibration-to-spike encod-
ing, visible light communication, and neuromorphic edge
processing, Vibe2Spike achieves, to the best of our knowledge,
the first practical realization of SNNs for battery-free vibra-
tion sensing. This integration substantially lowers power re-
quirements, simplifies hardware, enhances scalability, enabling
smart environments capable of predictive maintenance, auto-
mated machine recognition, and context-aware interactions at
minimal cost.

Our Contributions include:

« Battery-Free, Vibe2Spike Tag: We develop a low-cost,
self-powered tag that converts ambient vibrations into
sparse visible light pulses using only a piezo, diode, and
LED, without batteries, RF modules, or microcontrollers.

o End-to-End Neuromorphic Sensing Pipeline: We de-
sign an end-to-end event-based pipeline, directly coupling
physical spike generation with temporally binned SNN
inference, eliminating frame-based processing.

o Evolutionary SNN Optimization: We apply the EONS
framework to evolve lightweight SNN architectures op-

timized for accuracy, latency, and hardware efficiency,
enabling classification of five vibration sources.

« Empirical Evaluation: We achieve 94.9% average classi-
fication fitness across five classes in a workshop environ-
ment where we track equipment activity and empirically
evaluate system performance in situ.

II. RELATED WORK

Battery-Free Sensing: Battery-free sensing systems have
evolved from early RFID-based tags like WISP [5] and
Moo [6], which used RF backscatter to transmit sensor data
with harvested energy. Hybrid analog-digital schemes (e.g.,
Talla et al. [7]) enabled acoustic sensing via WISP, while later
advancements like PaperID [8], RF Bandaid [9], and Live-
Tag [10] expanded to touch and environmental interactions.
Despite progress, RF-based systems face inherent trade-offs:
passive tags achieve less than 12m range (e.g., RF Bandaid’s
9m at 160uW [9]), while active LoRa backscatter [11] extends
range to hundreds of meters but requires dedicated infrastruc-
ture and risks eavesdropping due to omnidirectional signal
leakage. Non-backscatter approaches like Pible [12] (648uW
BLE) and IuXbeacon [13] (100m range) reduce deployment
complexity but demand energy-intensive radios, limiting scal-
ability.

Visible Light Communication (VLC): VLC systems have
primarily targeted low-power data transmission but face con-
straints due to camera and modulation inefficiencies. Early
systems like LED-to-LED communication [14] achieved mod-
est ranges of up to 2m at 289mW. Successive innovations,



including RetroVLC [15] and PassiveVLC [16], significantly
reduced power consumption to 90uW and 150uW, respectively
but remained limited to short-range communication (2.4m
and 4.5m). Subsequent solutions, such as RetroTurbo [17]
achieved an improved range of 7.5m (0.8mW 8kbps), and
RetroMUMIMO [18] enabled concurrent transmissions at up
to 3.75m.

Although LightAnchors [19] effectively utilized smartphone
cameras operating at 240 fps for LED detection, its reliance on
traditional RGB cameras (> 500 mW) resulted in high power
demands for continuous operation. Additionally, prior VLC
systems target high-rate communication rather than sparse,
low-power event transmission. Our work fills this gap by
using VLC for sparse, event-driven communication of vibra-
tion events, optimized for low energy budget and real-time
decoding with neuromorphic processors.

VLC as an Alternative to RF-based Sensing: Our work,
Vibe2Spike, builds on these foundations and addresses the
limitations of both RF and VLC-based systems by tightly inte-
grating VLC with neuromorphic sensing and edge processing.
First, VLC enables us to avoid RF spectrum congestion—a
growing concern due to widespread use of WiFi, BLE, and
other wireless technologies. Unlike RF backscatter systems
that expose transmissions broadly and risk eavesdropping, our
system confines communication within a physical space using
visible light. VLC signals cannot penetrate walls, and with
highly directional LEDs, we constrain signal propagation to
the reader’s field of view, enhancing privacy and security. In
contrast to RF-based systems that require complex security
protocols [20], users of Vibe2Spike can physically disable
communication (e.g., covering the LED) for intuitive, low-cost
privacy control [21]. Finally, VLC introduces no electromag-
netic interference, making Vibe2Spike suitable for sensitive
environments like hospitals and EMI-heavy industrial settings.
By combining these communication advantages with battery-
free sensing and SNN-based neuromorphic processing, our
system sets a new direction for low-power, secure, and scalable
smart environment sensing.

Edge AI with Spiking Neural Networks (SNNs): In addi-
tion to innovations in sensing and communication, Vibe2Spike
advances the computational layer by leveraging energy-
efficient neuromorphic inference through Spiking Neural Net-
works (SNNs). SNNs offer a promising path for energy-
efficient edge AI due to their sparse, event-driven nature.
Applications include sub-uW biosignal decoding [22], [23],
event-based vision [24], and distributed low-bandwidth sensor
networks [25]. However, most existing work assumes stable
power availability, often simulating SNNs on neuromorphic
hardware without integrating them with energy-constrained
sensors. Moreover, evolutionary frameworks like EONS [4]
optimize SNN architectures for static datasets but have not
fully explored end-to-end deployment with real-world, bat-
teryless, event-driven sensors. Our work bridges this gap by
coupling physical spike generation from a vibration-powered
tag with evolutionary-optimized SNNs for activity classifica-
tion. This constitutes, to the best of our knowledge, the first

integration of battery-free sensing, VLC, and neuromorphic
processing into a unified, deployable system.

III. SYSTEM OVERVIEW

We now describe the components of the Vibe2Spike system,
illustrated in Fig. 1. Vibe2Spike is designed to detect, process,
and classify the unique vibration patterns of human-operated
devices in real time, enabling the transformation of everyday
environments—such as workshops and kitchens—into smart,
context-aware spaces. These settings are rich in vibration
signals generated by tools and appliances, but current sensing
technologies either ignore these signals or are too costly and
power-hungry for scalable deployment. The first component is
the Vibe2Spike tag (Fig. 1A), a low-cost, battery-free sensor
that converts mechanical vibrations into visible light pulses.
Costing less than $1, each tag is composed of a piezoelectric
disc, a diode, and an LED. It harvests vibrational energy to
power the LED, producing sparse optical spikes. The tag can
be attached to any device that vibrates—such as a sander,
blower, or vacuum—providing a lightweight and unobtrusive
sensing mechanism. Each device’s vibration generates a char-
acteristic temporal signature in the emitted light. A neuromor-
phic event-based camera (Fig. 1B) captures these light pulses
as asynchronous ON/OFF events, enabling high-speed, low-
power sensing. To prepare the event stream for classification,
we implement a temporal binning pipeline that groups events
into fixed-size time windows and converts them into structured
feature vectors. This process preserves the temporal structure
of the signal while making it compatible with learning algo-
rithms. Finally, a Spiking Neural Network (SNN) processes
these feature vectors using an encoder-decoder architecture.
It classifies the input based on the temporal dynamics of
each device’s vibration signature, enabling real-time, energy-
efficient recognition of equipment activity.

A. Vibe2Spike Tag Design

We describe the design and function of the Vibe2Spike
tag, illustrated in Fig. 2. The tag’s primary function is
to convert ambient mechanical vibrations into visible light
pulses in a battery-free, power-efficient manner—enabling
scalable, low-cost sensing in environments such as work-
shops and kitchens, where vibration signals are abundant.
Each tag consists of a 40mm piezoelectric disk (Same Sky
CEB-44D06 or equivalent), a surface-mounted LED (King-
bright APT3216LSECK/J4-PRV), a 0.5W 12V Zener diode,
and a 3D-printed case with a dual-spring mechanism. The
vibration-to-light conversion circuit is shown in Fig. 2A. Two
wires—one from the center electrode and one from the outer
metal shim—connect the piezo to the LED and Zener diode
in parallel. The Zener diode regulates output voltage, protects
the LED from surges, and rectifies the AC signal, ensuring
current flows only when forward-biased.

Because the raw current generated by typical piezo deforma-
tion is insufficient to power an LED directly, the tag relies on
mechanical amplification rather than electronic amplification.
The assembled tag is shown in Fig. 2B, while the dual-spring
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Fig. 2. Vibe2Spike schematic. (A) Electrical circuit diagram showing a
piezoelectric disk, a Zener diode, and an LED connected in parallel to convert
vibration into visible light pulses. (B) Assembled Vibe2Spike tag with 3D-
printed housing and embedded dual-spring mechanism. (C) Cross-sectional
mechanical diagram illustrating the external spring (surrounding) for preload
tension and the internal spring (centered) for asymmetric deformation under
vibration.

design is detailed in Fig. 2C. The external spring (bottom
of Fig. 2C) is positioned beneath the piezo and surrounds
the inner spring concentrically. It applies a constant upward
preload, keeping the piezo pressed against the housing and
ensuring mechanical tension is maintained during operation.
Nested inside it is the internal spring (top of Fig. 2C), located
directly below the piezo’s center. This inner spring is stiffer
and more constrained in movement. It is designed to permit
greater upward flexing while limiting downward displacement,
thus introducing asymmetry in the piezo’s strain response.

As the tag experiences oscillatory motion from the device
it’s mounted on, the piezo’s perimeter—rigidly clamped to
the case—follows the device’s vibration, while the center
flexes differentially due to the internal spring. This causes a
large deformation gradient across the piezo disk. The resulting
alternating strain produces an AC voltage signal. When this
voltage exceeds the LED’s forward threshold, the circuit
emits a visible light pulse. The Zener diode ensures clean,
unidirectional current flow, and the blinking pattern mirrors the
source vibration frequency. To assemble the tag, the internal
spring is placed in the central spring cavity of the lower case,
directly under the piezo center. The external spring is placed
concentrically around it. The piezo is clamped between the
top and middle layers using two short screws, then mounted
to the bottom piece with four longer screws. The springs are
compressed to achieve a total tag height of 13.8-12.8,mm,
ensuring consistent mechanical preload.

In summary, the Vibe2Spike tag uses a nested dual-spring
design and a passive circuit to convert vibration into optical
pulses—without batteries, microcontrollers, or wireless radios.
Its simplicity and low power requirements make it suitable for
dense, cost-effective deployment in real-world smart environ-
ments.

B. Event-Based Vibration Capture

As the next step in our system, the blinking LED output
from the deployed Vibe2Spike tag is captured by a neuromor-
phic, event-based camera, which records changes in brightness
as a sequence of discrete ON (1) and OFF (0) events. Unlike
conventional frame-based cameras, event-based sensors detect
only pixel-wise changes in intensity, enabling microsecond-
level temporal resolution and sub-millisecond latency [26]. For
our system, we use the EVK3HD camera from Prophesee,
which supports asynchronous event detection with minimal
power consumption.

As the LED flickers in response to device vibrations, multi-
ple adjacent pixels in the camera’s field of view are triggered.
Each brightness change generates an event tuple:

Event = (x, y, polarity, timestamp)

« coordinate (x, y) denotes the pixel location,
e polarity is 1 for ON events and 0 for OFF events,
o timestamp provides microsecond-resolution timing.

These asynchronous events collectively encode the temporal
signature of a device’s vibrations.

C. Event Data Preprocessing

To ensure high-quality input during training, we performed
a 1-minute calibration phase to identify the pixel with the
highest cumulative event count as the source of the temporal
signal for each device. This design choice reduced noise and
improved label fidelity, extracting high-SNR temporal features
to train the Spiking Neural Network (SNN), enabling us to
focus on the core challenge of designing end-to-end event-
driven neuromorphic sensing using SNNs. While this heuristic
aids training, our trained model is agnostic to pixel location
and can classify vibration events from any pixel’s temporal
stream, the overall pipeline is compatible with broader pixel-
parallel architectures. In prior work (NeuroCamTag [27]), we
developed streaming event queuing and pixel-wise processing
methods suitable for scaling to full-field inference. These
techniques can be integrated into future versions of Vibe2Spike
to support real-time classification across all active pixels
without requiring a fixed localization step.

D. Temporal Event Binning and Feature Extraction

To transform raw event streams into structured input for
classification, we apply a temporal binning process. Events
from the selected LED pixel are grouped into fixed-size time
windows of 50 milliseconds. Within each bin, we compute
the total number of ON events (brightness increase) and OFF
events (brightness decrease), resulting in a two-dimensional
feature per bin.



For a sequence of N consecutive bins, we concatenate
the ON/OFF counts to form a 2xN feature vector. This
representation preserves the temporal structure of the signal
while reducing data complexity for downstream learning. For
instance:

e N =10 bins — 0.5s total duration — 20 input features
e N =50 bins — 2.5s total duration — 100 input features

In our evaluation, by varying N, we investigate the trade-off
between classification latency and accuracy: shorter sequences
offer faster inference, while longer ones may capture more
stable temporal patterns. These feature vectors are then used
to train the SNN, as described in the next section.

E. Spiking Neural Network Design and Training

Spiking Neural Networks (SNNs) are especially well-suited
for the Vibe2Spike system because they align with the key
properties of our sensing pipeline: sparse, asynchronous, and
temporally structured data. Unlike traditional neural networks
that rely on dense, frame-based inputs, SNNs operate on
discrete spikes, making them a natural fit for processing the
binary ON/OFF events generated by our event-based camera
in response to vibration-induced LED flickers.

This spike-based processing allows SNNs to efficiently
capture the temporal dynamics of each device’s vibration
signature—critical for distinguishing between tools that exhibit
overlapping frequency bands or intermittent operation. Fur-
thermore, because SNNs require significantly fewer operations
than conventional CNNs and can be deployed on neuromor-
phic hardware, they are ideal for real-time inference in energy-
constrained environments like workshops and kitchens, where
Vibe2Spike tags are deployed.

To classify device activity based on temporally binned event
features, we employ a spiking neural network (SNN) trained
using the TENNLab neuromorphic framework [28] and used
the the Evolutionary Optimization of Neuromorphic Systems
(EONS) [29] to optimize the SNNs. EONS uses a genetic
algorithm to evolve populations of SNNs over multiple gen-
erations. Each network is evaluated for classification accuracy
and undergoes mutation, crossover, and selection to form the
next generation. This enables joint optimization of both the
network’s topology (e.g., number of neurons, recurrent loops,
sparsity) and parameters (e.g., synaptic weights, time con-
stants). Besides the network itself, when developing spiking
neural networks, input data must be encoded into spikes and
output spikes from the network must be decoded into some
decision or classification.

1) Input Encoding: Argyle-4 Scheme: Following the bin-
ning of event data (as described in Section III-D), we extract
temporal features consisting of ON and OFF event counts.
These features are then encoded into spikes using the Argyle-4
encoding scheme [30], [31]. Our choice of encoding technique
is based on both manual hyperparameter experimentation and
prior applications in neuromorphic control and regression [31],
[32].

For each experimental run, the bin size determines the
resolution of temporal features and hence the spike encoding

granularity. For example, if we use a bin size of 50, we obtain
50 ON-event counts and 50 OFF-event counts—yielding 100
input values per sample. These values are automatically scaled
into a normalized range, based on the minimum and maximum
values observed in the training data. While the example shown
in Fig. 3 uses a 0-38 range, this range is dataset-dependent
and determined dynamically.

Each SNN input sample contains 100 temporal features
(for binsize=50) derived from 50 ON and 50 OFF event
counts. These values are then encoded into spikes using the
Argyle-4 scheme. The encoding proceeds by processing each
ON/OFF pair every three simulation timesteps. Each input
value produces two spikes with complementary magnitudes
x and 1 — z, and thus each pair results in four spikes total.
These spikes are applied to a subset of input neurons in each
3-timestep window. With 50 such pairs, the encoding spans
150 timesteps and injects exactly 200 spikes into the network
per sample.

The Argyle-4 encoder partitions the input space into equal-
sized regions and maps each value to a complementary pair
of spikes applied to adjacent input neurons. This ‘“‘charge
injection” technique conserves input energy, allows smooth
transitions between neighboring values, and is efficient for
neuromorphic deployment.

This encoding strategy (for our dataset), visualized in
Fig.3, provides a structured and reliable way to inject tem-
porally binned event features into a spiking neural network. It
has demonstrated effectiveness across multiple neuromorphic
tasks, including CartPole control [31] and function approxima-
tion [32], and aligns well with the sparse, time-varying signals
produced by our event-based sensing pipeline.
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Fig. 3. Diagram to show how an argyle encoder converts values from 0 to
38 into two spikes having values between O and 1.

2) Output Decoding: After spike encoding, each input
sample is processed by a spiking neural network (SNN)
trained to classify the device based on its vibration signature.
We employ the Winner-Take-All (WTA) decoding strategy,
commonly used in neuromorphic classification. Each output
neuron corresponds to one of the device classes. During
inference, the output neuron that emits the highest number of
spikes over the simulation window determines the predicted
class. This approach is simple, interpretable, and compatible
with the temporal dynamics of spiking activity.

IV. EVALUATION AND RESULTS

To evaluate the effectiveness of the Vibe2Spike system, we
conducted experiments using a representative set of human-



operated vibratory tools. Our goal was to assess the system’s
ability to distinguish between devices based on their vibration-
induced light signals, captured via an event camera and
classified by a spiking neural network.

A. Device Selection and Experimental Setup

Fig. 4. Four common handheld devices used in evaluation: (A) inflator blower,
(B) cordless drill, (C) handheld vacuum, and (D) palm sander.

We selected four common devices with differing mechanical
vibration signatures (Fig. 4): a palm sander, a cordless drill, a
handheld vacuum, and an inflator blower. These tools vary in
frequency and duty cycle characteristics and include devices
that exhibit little to no visible movement, making them ideal
candidates to evaluate the effectiveness of a vibration-only
sensing method.

Each device was fitted with a Vibe2Spike tag and operated
under standard conditions. The event-based camera was placed
at a fixed location approximately 30 cm away from the device,
with a clear line-of-sight to the Vibe2Spike tag’s LED. Based
on our prior work with NeuroCamTag [27], we found that
the LED remains reliably detectable by the event camera even
at oblique angles, with up to 85 degrees of angular offset
between the LED and the camera’s optical axis. This tolerance
ensured consistent event capture across all trials, even when
slight variations occurred in device orientation. We collected
five trials per device, yielding a total of 25 minutes of labeled
event data across all classes.

B. Event Volume and Feature Distributions

Due to differing vibration intensities, device mass, and
mounting configurations, the number of ON/OFF events gener-
ated by the Vibe2Spike tag varies significantly across devices.
Fig. 5 shows the distribution of total events per device class.
For instance, the sander consistently produces more events,
while the vacuum and inflator yield fewer due to less aggres-
sive vibrations.

While these differences influence the raw signal volume,
the SNN must learn to distinguish devices based not only on
count but on the temporal structure of the events. This figure
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Fig. 5. Event count distributions across different vibration classes.

demonstrates that classification is not trivially tied to event
count—devices like the drill and blower exhibit overlapping
distributions—indicating that the SNN is learning nuanced,
time-dependent patterns rather than simply relying on total
event magnitude.

C. Classification Experiment Design

To evaluate classification performance, we used the
full Vibe2Spike pipeline—including temporal binning (Sec-
tion III-D), Argyle-4 spike encoding and SNN classification
(Section III-E)—in conjunction with the EONS evolutionary
training framework. For each binning configuration, we gen-
erated a population of 999 randomly initialized spiking neural
networks and trained them over multiple generations using
classification accuracy as the fitness metric. We tested four
bin sizes, corresponding to latency windows ranging from
250 ms to 5 seconds. All models were validated on holdout
samples, and the best-performing model for each configuration
is reported in Table I.

D. Evaluation Metrics and Confusion Matrix

Table I shows that a 2,500 ms (2.5-second) binning window
yields the highest F1 accuracy of 94.9%, outperforming shorter
or longer durations. This suggests that coarser temporal bins
effectively aggregate sparse optical spikes while reducing sen-
sitivity to momentary fluctuations. Shorter bins may fragment
the signal, whereas longer bins preserve the characteristic
signal profile.

The confusion matrix in Fig.6 confirms strong per-class
accuracy, with only minor confusion between blower and
vacuum devices—two classes with similar frequency profiles.
These results highlight the critical role of binning in balancing
latency, noise robustness, and signal expressiveness in neuro-
morphic pipelines like Vibe2Spike.
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Fig. 6. Confusion matrix of the five classes from the best SNN network with
a F1 accuracy of 94.9%.

E. Pipeline Latency and Design Trade-offs

The temporal binning strategy introduces an important
trade-off between latency and classification accuracy. Table I
summarizes this relationship across four binning configura-
tions. With only five bins (250 ms total latency), the system
responds quickly but achieves lower F1 accuracy (81.16%).
As the bin count increases, classification accuracy improves,
peaking at 94.88% with 50 bins (2.5s latency). However,
further increasing to 100 bins (5s) yields only marginal gains
while introducing additional delay.

These results demonstrate the flexibility of the Vibe2Spike
pipeline: developers can tune bin size to prioritize speed (e.g.,
for real-time alerts) or precision (e.g., for post-hoc analysis).
While longer temporal windows allow better aggregation of
signal structure, they also delay response time, which may
not be suitable for time-critical applications.

TABLE I
F1-ACCURACY VALIDATION SCORES

Latency Time | Bins | Validation (%)
250 ms 5 81.16
500 ms 10 88.92

2,500 ms 50 94.88
5,000 ms 100 93.52

V. DISCUSSION

The results demonstrate that Vibe2Spike achieves strong
classification performance using a minimalist, battery-free
sensing architecture. With an average F1 accuracy of 94.9

The effectiveness of longer temporal bins (e.g., 2.5s) ob-
served in our experiments points to a broader design consider-
ation: binning is not merely a preprocessing step, but a critical
tuning knob that governs the balance between responsive-
ness and reliability in event-driven pipelines. For applications
where immediate decisions are not essential, coarser bins

can enhance signal quality and stability. This reinforces the
suitability of spiking neural networks, which are naturally
aligned with sparse, temporally structured input and avoid the
inefficiencies of dense, frame-based deep learning models.

Unlike traditional wireless sensing systems that rely on RF
radios, microcontrollers, and batteries, Vibe2Spike eliminates
the need for active power sources or wireless chips. The tag
leverages visible light communication (VLC) and harvests
energy from ambient vibrations, reducing cost, maintenance
burden, and power consumption. Compared to prior VLC-
based systems, our approach offers significantly lower hard-
ware complexity and leverages the neuromorphic properties
of event cameras to produce energy-efficient, high-temporal-
resolution input streams.

Nevertheless, limitations remain. The system’s performance
depends on the strength and consistency of the device’s vibra-
tions, which may vary across use contexts. Temporal binning
introduces latency that may be unsuitable for applications
requiring sub-second response times. Moreover, while the
Evolutionary Optimization of Neuromorphic Systems (EONS)
framework yields highly efficient SNN models, its training
process is computationally intensive and sensitive to parameter
tuning, which could limit rapid deployment in new settings.

Another key design consideration in this work was our
decision to isolate the LED signal by selecting the pixel
with the highest cumulative event count during training. This
heuristic was used to improve label fidelity and provide the
cleanest signal for learning, but it is not a requirement at
inference time. Our trained SNN generalizes across pixels and
is compatible with a broader, pixel-parallel pipeline. In future
iterations of Vibe2Spike, we plan to support full-field, real-time
classification by incorporating high-throughput event queuing
and pixel-wise processing techniques, such as those developed
in our NeuroCamTag system [27].

Finally, we envision future improvements across three axes:
(1) extending Vibe2Spike to function robustly under varying
lighting and occlusion conditions, (2) enabling multi-tag sce-
narios with overlapping optical signals and real-time source
separation, and (3) deploying on neuromorphic hardware ac-
celerators for edge inference. These directions will help realize
a scalable, ultra-low-power, event-driven sensing system for
context-aware environments.

VI. CONCLUSION

In conclusion, Vibe2Spike presents a novel, battery-free, and
wireless sensing framework that combines visible light com-
munication with spiking neural networks to enable vibration-
based activity recognition in smart environments. By using
ultra-low-cost, passive tags composed solely of a piezoelectric
disc, a Zener diode, and an LED, the system achieves scalable
and reliable sensing without batteries or RF radios. Our
evaluation across five device classes demonstrates a high clas-
sification accuracy of 94.9%, underscoring the effectiveness
of our event-driven pipeline. Additionally, our analysis of
latency-accuracy trade-offs offers important design insights
for real-time neuromorphic sensing applications. Vibe2Spike



represents a promising advance toward sustainable, intelligent
sensing infrastructure. Future work will focus on scaling to
larger deployments, integrating additional energy-harvesting
modalities, and improving SNN training and hardware deploy-
ment strategies.optimization techniques.
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